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Summary Hypoglycemia is related to lethargy, psychiatric disorders, and impaired brain 
metabolism. Hypoglycemia is one of  the leading factors of  death in blood glucose level (BGL) 
metabolism disorders. Optical methods have been heavily researched due to its potential to 
eliminate drawbacks of  conventional hypoglycemia detection; however, clinical data are still 
scarce. This study objective was to measure the sensitivity and specificity of  non-invasive 
BGL Measurement Optical Device (NI-BGL-MOD) to detect hypoglycemia. The reference 
standard is venipuncture spectrophotometry. Researcher has developed NI-BGL-MOD, 
which we have used in a clinical trial in December 2015. The researchers have used spec-
tral data collected from the device to measure the BGL of  randomly selected 110 partici-
pants who were older than 17 y old. Each participant was measured five times. There are a 
total of  550 data sets that were then compared to BGL measurement using the reference 
standard. The spectral data were optimized using Discrete Fourier Transform and inferred 
to BGL prediction using the Fast Artificial Neural Network. Researchers have defined hypo-
glycemia case with BGL level at 75 mg/dL or lower. The researchers have calculated sensi-
tivity and specificity using epiR in Rstudio. Respondents’ BGL values were between 67 to 
96 mg/dL. Researchers have classified eighty-nine cases as hypoglycemia. There are 461 
cases classified as not hypoglycemia. The sensitivity was 54%, and the specificity was 97%. 
Diagnostic accuracy was 86%, and the number to diagnose was 1.96. The newly developed 
method NI-BGL-MOD could be used to detect hypoglycemia.
Key Words non-invasive, blood glucose level, measurement, optical device, hypoglycemia

Hypoglycaemia is a state of  decreased blood glucose 
level (BGL) or concentration in human blood (1). Hypo-
glycaemia is related to lethargy (2), psychiatric disor-
ders (3), and impaired brain metabolism (4).

Hypoglycemia is one of  the leading factors of  death 
in BGL metabolism disorders. Patients experiencing  
severe hypoglycemia were at higher risk of  CV events 
and death. The risk particularly high shortly after the 
hypoglycemic episode (5). Recurrent induced hypo-
glycaemia may cause severe hypoglycaemia. Other re-
lated risks include hypoglycemic arrhythmic death and 
vascular diseases (6). Hypoglycemia mediated effects 
may contribute to cardiovascular dysfunction. Hypo-
glycaemia could cause Qt interval prolongation. Hypo-
glycaemia related to increased plasma epinephrine and 
norepinephrine concentrations. Hypoglycaemia related 
to hypokalemia. Hypoglycaemia related to changes to 
cardiac workload and heart rate. Hypoglycaemia may 
cause a fall in central arterial pressure and large vessel 

elasticity. Hypoglycaemia related to an increase in endo-
thelial dysfunction and inflammation. Hypoglycaemia 
related to platelet aggregation and increased blood co-
agulation (7).

BGL measurement is an integral part of  nutritional 
management. Currently, there are no known depend-
able methods to detect hypoglycaemia and giving a 
warning system to the patient. Hypoglycaemia can only 
predict from its a symptom, or measured using conven-
tional blood glucose level measurement. The methods 
itself  based on phlebotomy or blood extraction proce-
dure, which is hurting, risk of  disease spread, need 
skilled person, and relatively costly (8). The only cur-
rently plausible methods to detect hypoglycaemia is 
using the Continuous Glucose Monitoring System, 
which is not portable and costly (9, 10).

Optical methods have been heavily researched due to 
its potential to eliminate drawbacks of  conventional 
hypoglycemia detection; however, clinical data are still 
scarce (11, 12). The researcher has done a clinical trial 
of  non-invasive methods to non-invasively measure the 
blood glucose level in 2016 (13, 14). Then the 
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Researcher realises the possibility of  using the same 
methods to detect the hypoglycaemia.

This study objective was to measure the sensitivity 
and specificity of  non-invasive BGL Measurement Opti-
cal Device (NI-BGL-MOD) to detect hypoglycemia. The 
researchers have used venipuncture spectrophotometry 
as a reference standard.

MATERIALS AND METHODS

This research is an experimental research using sec-
ondary data taken from a previous clinical trial of  
NI-BGL-MOD (15, 16). Researcher team have designed 
the NI-BGL-MOD in 2015 (13, 14). The Clinical team 
did the clinical trial in December 2015, and the team 
has done the data analysis in 2018. The research team 
has registered the clinical trial to Health Research Ethi-
cal Committee, National Institute of  Health Research 
and Development, Indonesian Ministry of  Health; no 
LB.02.01/5.2/KE.493/2016).

The researchers have used spectral data collected 
from the device to measure the BGL of  110 partici-
pants. Participants were older than 17 y old, did not 
tired, having alcoholic drinks, smoking, nor pregnant. 
Each participant was measured five times. Five hundred 
fifty data sets compared to BGL measurement using ref-
erence standard.

The spectral data were optimized using Discrete Fou-
rier Transform (17) and inferred to blood glucose level 
prediction using Fast Artificial Neural Network (18). 
The researcher has defined hypoglycemia case with BGL 
level at 75 mg/dL or lower (1). The researchers have 
calculated sensitivity and Specificity (19) using epiR 
(20) in Rstudio (21).

RESULTS

Respondents’ BGL values were between 67 to 96 mg/
dL. The researchers have classified Eighty-nine cases as 
hypoglycemia. Four hundred sixty-one cases have clas-
sified as not hypoglycemia (Table 1).

The sensitivity was 54%, and the specificity was 97%. 
Diagnostic accuracy was 86%, and the number to diag-
nose was 1.96 (Table 2).

DISCUSSION

NI-BGL-MOD Specificity at 97% shows that practi-
tioner may use NI-BGL-MOD method for detecting hypo-
glycaemia. However, sensitivity at 54% leaves room for 
further improvement.

Current methods for detecting hypoglycaemia using 
apparent clinical symptom observation, like using dogs 
(22), still outdone NI-BGL-MOD methods in the sub-
stantial margin at the specificity of  97.9%. Measure 
insulin concentration remain the best choice for detect-
ing hypoglycaemia at a sensitivity of  97.5% and speci-
ficity of  100% (23, 24). Periodical data observation 
dependent methods such as statistical methods (25, 26) 
and machine learning-based methods (27, 28) gave a 
comparable performance to our methods (Table 3).

The number needed to diagnose at 1.96 means at  
a minimum, only two repeated measurements needed 

Table 1. Base prevalence of  hypoglycaemia. Hypogly-
caemia detected using NI-BGL-MOD. The value then 
compared to venipuncture measurement.

NI BGL MOD

Veni Puncture

Total
Positive 

Hypoglycaemia
Negative 

Hypoglycaemia

Positive 
Hypoglycaemia

78 11 89

Negative 
Hypoglycaemia

67 394 461

Total 145 405 550

Table 2. Sensitivity and specificity of  NI-BGL-MOD for 
hypoglycaemia detection.

Parameters
95% Confidence Interval

Estimation Lower Upper

Apparent Prevalence 0.162 0.132 0.195
True Prevalence 0.264 0.227 0.303
Sensitivity 0.538 0.453 0.621
Specificity 0.973 0.952 0.986
Diagnostic Accuracy 0.858 0.826 0.886
Diagnostic Odd Ratio 41.7 21.1 82.5
Number Needed to 

Diagnose
1.958 1.646 2.468

Youden Index 0.511 0.405 0.607
Positive Predictive Value 0.876 0.790 0.937
Negative Predictive Value 0.855 0.819 0.886
Likelihood Ratio of  a 

Positive Test
19.81 10.85 36.16

Likelihood Ratio of  a 
Negative Test

0.475 0.398 0.567

Table 3. Comparison of  sensitivity and specificity of  
methods to detect hypoglycaemia.

Hypoglycaemic 
Detection Methods

95% Confidence Interval

Sensitivity Specificity Reference

NI-BGL MOD 54% 86% This trial
Measurable Biomarker 89% 100% (23)

98% 92% (24)
Clinical Symptom 

Observation
98% (22)

Statistical Data 
Observation

84%
89%

82%
86%

(25)
(26)

Machine Learning Data 
Observation

78%
80%
80%
69%

60%
50%
98%
97%

(29)
(30)
(28)
(27)
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to diagnose hypoglycaemia accurately. The current de-
signed NI-BGL-MOD is taking five measurements se-
quentially and take the average, which is sufficient.

NI-BGL-MOD eliminate the use of  phlebotomy to 
extract human blood from the central vein or peripheral 
vein in conventional biomarker measurement method. 
NI-BGL-MOD make use of  minimal human auditory 
capabilities to detect hypoglycaemia, as opposed to clini-
cal symptom observation. NI-BGL-MOD rely on non-in-
vasive measurement rather than observation of  data 
series, as opposed to a statistical or machine-learning 
data-observation method (29, 30).

The current clinical trial data came from cross-sec-
tional or one-time measurement data, as opposed to 
array periodical measurement, so. In contrast, the sys-
tem designed to detect hypoglycaemia, further clinical 
trial needed to detect the timing for such instance. The 
current clinical trial data came from cross-sectional  
or one-time measurement data, as opposed to array 
periodical measurement, so. In contrast, the system 
designed to detect hypoglycaemia, further clinical trial 
needed to detect the timing for such instance.

Therefore, the artificial intelligence or machine learn-
ing engine is similar to those used on the periodical data 
observation method. However, the current system does 
not yet to have the capabilities to detect when the hypo-
glycaemic instance shall occur.

Based on the evidence shown from the current study, 
the researchers concluded that the newly developed 
method NI-BGL-MOD could be used to detect hypo-
glycemia.

Researchers are planning to conduct one further 
clinical trial in 2020. The trial shall use an oral glucose 
tolerance test setting (31, 32) to further elaborate  
NI- BGL-MOD methods potential for detecting hypo-
glycaemic event timing.
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